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The algebraic classification of second-order symmetric tensors based on Segr6 
type is used to give a systematic description of  energy-momentum tensors in 
General Relativity. The uniqueness of the physical interpretation of  a given 
energy-momentum tensor is discussed algebraically and a brief description of  
their "inheritance of symmetry" properties is also given. 

1. INTRODUCTION 

The purpose of this paper is to discuss a unified geometrical and 
algebraic approach to the study of the physical interpretation of the energy- 
momentum tensor in General Relativity. It will be shown that many sim- 
plifications result from a geometrical study of this tensor and its algebraic 
classification by means of Segr6 type and a brief review of this classification 
will be given at the end of this section. In Section 2, many standard 
energy-momentum tensors will be listed and classified, as will some (non- 
interacting) combinations of energy-momentum tensors. In Sections 3 and 
4 the problem of the uniqueness of the physical interpretation of certain 
energy-momentum tensors will be discussed and some general results will 
be presented. Finally, in Section 5, the problem of the inheritance of metric 
symmetries by the energy-momentum tensor will be briefly considered. Some 
of the results presented have already appeared in the literature, but the 
approach followed here will be simpler and more systematic. Several new 
results will be presented and two errors in the literature will be corrected. 

Throughout the paper, M will denote a space-time here assumed to 
be a smooth, four-dimensional, real manifold carrying a Lorentz metric g 
of signature (-1, +1, +1, +1) whose coordinate components will always be 
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denoted by gab. If p 6 M, the tangent space to M at p will be denoted by 
T p ( M ) .  Latin indices take the value 0, 1, 2, 3, and round brackets will 
denote the usual symmetrization. In any particular coordinate system, the 
components of the Ricci tensor and Ricci scalar are denoted by Rab and 
R, respectively, and Einstein's equations are 

Rab -- �89 = 8~rTab (1) 

where Tab are the components of the energy-momentum tensor. For use 
later in the paper it is convenient to introduce a (real) null tetrad (l, n, x, y) 
atp, where l, n, x,  y ~ T v ( M )  and where the only nonvanishing inner products 
between tetrad members are lana = xax~ = yay~ = 1. Sometimes it is con- 
venient to modify a null tetrad to a complex null tetrad (/, n, m, r~) where 
v ~  m = x +  iy. These tetrads satisfy the following completeness relations: 

gab = 21(anb) + XaXb + YaYb = 21(anb) + 2m(afflb) (2) 

There are many approaches to the algebraic classification of the energy- 
momentum tensor in General Relativity (for reviews see Hall, 1983a, 1984a). 
For the present purposes, the classification by Segr6 type is perhaps the 
most convenient (Hall, 1976) (a brief review is given in Kramer et al., 1980). 
The Lorentz signature of the metric implies that the only possible Segr6 
types (for Tab # 0) are, in the Segr6 symbol notation, {1,111}, {211}, {31}, 
and {z~11}, where the digits inside the brackets refer to the multiplicity of 
the (real) eigenvalue represented and the z~ pair in the fourth symbol refers 
to a pair of complex conjugate eigenvalues of multiplicity one. This last 
type is the only one where complex eigenvalues occur. Eigenvalue 
degeneracies will be denoted by enclosing the appropriate digits inside 
round brackets. The first type {1,111} is the diagonalizable (over •) case 
and occurs if and only if Tab has a timelike eigenvector. In this case, the 
first digit, separated from the others by a comma, represents the timelike 
eigenvalue. For each of the above types a null tetrad can be introduced at 
p such that the following canonical forms are, respectively, obtained: 

Tab = 20"ol(,,nb) + Orl( lalb "~- nan b) + cr2x,,Xb + 0"3y~yb (3a) 

Tab = 2oq l(,~nb) + h u b  + 0-2xaxb + o'3yayb (3b) 

T,~b = 2oh l(anb) + 21(aXb) + 0-1Xa Xb q- cr2YaYb (3C) 

Tab = 20-ol(anb) + O'l( lalb -- nanb ) q- O'2XaXb "~- cr3YaYb (3d) 

where tro, 0-b ~ 0"3 ~ R and trl r 0 in (3d). A detailed discussion of the 
eigenvector-eigenvalue structure of each type can be found in Hall (1976, 



Physical Structure of Energy-Momentum Tensor 407 

1983a, 1984a). Here, it is noted that complete sets of independent eigenvector 
(eigenvalue) pairs for the canonical forms in (3) are 

lazk na(Oro+o'l), xa(or2), ya(o'3) in (3a) 

la(o-1), xa(tr2), ya(o'3) in (3b) 

la(~rl), y~(o-2) in (3c) 

1 ~ • ina(cro • io'1), xa(o'2), ya(o-3) in (3d) 

An energy-momentum tensor satisfies the dominant energy conditions 
(Hawking and Ellis, 1973) if at each p ~ M and for each timelike vector 
u c Tp(M) ,  Tobuau b >>- 0 and Tabu b is nonspacelike. These conditions forbid 
Tab from having Segr6 type {31} or {z$11} and restrict the other two cases 
by the following inequalities on the invariants o-i: ~ro-< 0, o'1 > 0, ~ro - oh -< 
o'~ -< 0" 1 - go (a  = 2, 3) in (3a) and ~rl <~ 0, trl -< o'~ - -or 1 (a = 2, 3) and h > 0 
in (3b) (Hall, 1983a, 1984a). 

To close this section, it is remarked that each given Segr6 type together 
with a precise specification of its degeneracies determines a minimal poly- 
nomial relationship for the matrix T~ b. Unfortunately the converse is not 
true, because, although the minimal polynomial determines the actual 
algebraic structure in the sense that it can distinguish among equations 
(3a)-(3d), it cannot in all cases determine the eigenvalue degeneracies. 
These minimal polynomial relationships are the "generalized Rainich condi- 
tions" (Hall, 1982, 1984a) because when applied to those energy-momentum 
tensors representing electromagnetic fields they yield the well-known 
Rainich conditions for these fields. 

2. EXAMPLES 

In this section, the algebraic structure of various (nonzero) energy- 
momentum tensors will be discussed. Since only algebraic properties are 
being considered, all energy-momentum tensors will be regarded as given 
at a particular point p 6 M in terms of a canonical tetrad at p. 

2.1. Electrovac Space-Times 

The algebraic structure of the energy-momentum tensor of an electrovac 
space-time is well known. One has 

Tab = z,'lalb (null case) (4) 

Tab =/x(21(anb)--XaXb --YaYb) (nonnull case) (5) 

In (4) 1 is the repeated principal null direction of  the null field and from 
(3b) the Segr6 type is {(211)} with zero eigenvalue. In (5) (l, n, x , y )  is a 
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null tetrad with l, n the principal null directions of  the field. The Segr4 type 
is {( 1, 1 )( 11)} with eigenvalues/z and - / z  as follows from (3a). The dominant  
energy conditions give v > 0 in (4) and / z  < 0 in (5). 

2.2. Fluid Space-Times 

A viscous fluid with coefficient of  dynamic viscosity ~7, bulk viscosity 
if, timelike fluid flow vector u ~ chosen to be future-pointing and normalized 
so that u"u,, = -1 ,  energy density p (with respect to ua), isotropic pressure 
p, shear tensor O'ab (=O'ba), expansion 0, and heat flow vector q~ has an 
energy-momentum tensor given by (see, for example, Misner et al., 1973) 

T~b = ( p + p - ~0) u,,ub + ( p - ~O)g,,b -- 2~?o'ab + 2U(aqb) (6) 

where uaqa = tr2 = 0 and o-abu b=  0. It follows that the heat flow vector, if 

nonzero, is spacelike. One would normally impose the physical requirements 
~7---0, ~'---0 together with the dominant energy conditions (which imply 
that p >- 0). However, it is of  interest to note that the general form of equation 
(6), with no further conditions other than the contracted relations on u ~, 
qa, and O'ab immediately following it, imposes no algebraic restriction on 
Tab. This follows because any  second-order symmetric tensor can be decom- 
posed into the general form (6). To see this, let S,b be such a tensor at 
p ~ M, u a any unit timelike vector at p, and hab = gab + UaU b the projection 
operator at p associated with u a. Then 

Sab = s c d  ( hac - UaUc)( hbd -- UbUd ) 

where 

= ( A +  B)uaub + Bgab + O'~b+2U(aq~) (7) 

l~cdl.~e 1,, A = S C a u c u a ,  B = ~ o  ,, ~,,~d 

Orfab = SCdhachbd -- Bhab = o"ba ( ~ o % u  b = 0, o -'a = 0) (8) 

q , =  ca ,, , - S  Udhca ( ~ u  q a = O )  

For a viscous fluid with no heat flow ( q a =  0), equation (6) reveals that u a 
is a timelike eigenvector of  Tab and so the Segr6 type is {1,111} or some 
degeneracy of this type. In the case of  a perfect fluid (~" = r /=  0, qa = 0) the 
Segr6 type is { 1, (111)} with eigenvalues - p  and p and the dominant  energy 
conditions are equivalent to 

p - p < - - O < - p + p  ( ~ p > 0  if Tab~:O ) 

For a nonviscous fluid with nonzero heat flow one has ff = 7/= 0, qa r 0 
in (6). It then easily follows that u a is not an eigenvector of Tab, but with 
qa, spans on invariant timelike 2-space of Tab, and this rules out the 
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possibility of  Tab having Segr6 type {31} or its degeneracy [for the definition 
and details of  the invariant 2-space structure of  Tab see Hall (1983a, 1984a) 
and Cormack and Hall, 1979). Also, all members of  the spacelike 2-space 
orthogonal to that spanned by u a and qa are eigenvectors of  Tab with 
eigenvalue p. Now let z a be a unit spacelike vector parallel to qa so that 
qa= qz a [q = (qaqa)l/2 > 0] and introduce any null tetrad (I', n', x, y) with 
s 1 'a = z ~ + u a and ~ n 'a = z - u a. Then (6) yields 

T~b=[ �89  b 1 t ! + [~(p + p) - q]n ,nb  

+ (p  -- p)lian'b ) +p(XaXb + YaYb) (9) 

There are now three possibilities: 

Case 1. (p + p)2 < 4q2. This is equivalent to p + p - 2q < 0 < p + p + 2q. 
A rescaling of l' and n' can then be used to cast (9) into the form (3d) and 
so one has the Segr6 type {zff(ll)}. Independent  real eigenvectors are x a 
and y" with eigenvalue p and there are complex eigenvectors l ~ + in ~ (which 
are easily written down in terms of the original field quantities) with 
corresponding eigenvalues �89 - p) 4- � 8 9  2 - ( p  + p)2] 1/2. This case would, 
of  course, be ruled out by the energy conditions. 

Case 2. (p  + p)2 : 4q2. The dominant energy conditions and the condi- 
tion q > 0 show that here one must have p + p - 2 q  = 0. Equations (9) and 
(3b) then show that the Segr6 type is {2(11)} with no further degeneracies 
possible. Independent  eigenvectors are U, x ", and ya with corresponding 
eigenvalues � 8 9  p), p, and p. The dominant energy conditions imply that 
p - p < - - O < p + p  and 3p<-p, and so p > 0 .  

Case 3. (p  + p ) 2 >  4q2. Here, the dominant  energy conditions imply 
that p + p • 2q are both positive. In this case a rescaling of l' and n'  can be 
used to cast (9) into the form (3a) and the Segr6 type is {1, 1(11)}. The 
(unique) timelike eigendirection is spanned by 1 - n and independent space- 
like eigenvectors are l +  n, x, and y with respective eigenvalues - p  + e, p - e, 
p, and p, where 

e = �89 + p) - �89 + p)2 _ 4q211/2 > 0 

(The eigenvectors l+  n are easily written in terms of the original field 
quantities.) The dominant  energy conditions imply that e-< p - p  and no 
further degeneracies in the above Segr6 type are possible. 

2.3. Neutrino Fields 

In this section only, the dominant energy conditions will be weakened 
to the single condition that at each p ~ M, TabUaUbr 0 for each timelike 
vector u ~ T , ( M ) .  For a neutrino field, the form of Tab has been considered 
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in Wainwright (1971) and Griffiths and Newing (1971) and will be discussed 
here only very briefly so as to bring it into the general scheme of the Segr6 
classification. Here, a complex null tetrad (l, n, m, r~) exists such that, if 
the above weakened energy condition is satisfied, Tab takes the form 

Tab = Alalb --2dp~to(4l(anb)- gab) + 2i~b~(d'mamb - -  o r f f l a m b )  (10) 

Here 1 is a geodesic null congruence whose twist to and shear ]tr I satisfy 
[crl2-4to2<-0, A is real, r complex (&~0) ,  and Ato-<0. Consequently, 
w = 0 ~ o - = 0 .  One can convert (10) into the canonical forms given in 
(3) by writing x/2 m a =  x " +  iy a as in Section 1 and performing a spatial 
rotation in the xy  plane to remove cross terms in x a and yd. The following 
possibilities arise (cf. Wainwright, 1971): 

A # 0, to # 0, o- # 0, Icr[ 2 # 4to 2-+ Segr6 type {211} 

A # 0, to # 0, o- # 0, 1o-12 = o 2 + 

A # 0 ,  ~o #0 ,  o '=0  

A # 0 ,  oJ 

A=O, to 

A = 0 ,  to 

=0,  o-=O --> 

# 0, ty # 0, [trl2 # 4to2~ 

#0 ,  ~#0,1~12 = 4to 2-, 

A = 0 ,  to #0 ,  t r = 0  -+ 

The eigenvectors and eigenvalues are easily obtained. 

{(21)1} 

{2(11)} 

{(211)} 

{(1, 1)11} 

{1, 11)1} 

{(1, 1)(11)} 

2.4. The Combination of  Two Radiation Fields 

This section deals with the combination of two (nonzero) noninteract- 
ing, radiation-type fields each with an energy-momentum tensor of the form 
(4) (one of which could be a null electromagnetic field). Let l' and n' be 
the null directions of these fields, so that the energy-momentum tensor 
becomes 

! ! 
Tab = v l la lb+ ' , P 2 n a l " l b  (11) 

It is assumed that l' and n' are nonparallel and scaled so that l ' n  'a = 1. The 
dominant energy conditions for each field yield vl > 0, v2> 0. A scaling 
trick similar to that used in Section 2.2 then shows that Tab has the form 
(3a) with Segr6 type {1, 1(11)} and respective eigenvalues -(VxV2) 1/2, 
(v~ v2) t/a, 0, and 0. Clearly there are no further degeneracies and correspond- 
ing eigenvectors are easily computed in terms of the original field quantities. 
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2.5. The Combination of  Two Perfect Fluids 

Consider now the noninteracting combination of two (nonzero) perfect 
fluids where their (unit, timelike, future-pointing) flow vectors u and v are 
assumed nonparallel.  I f  these fluids have densities p~ and pressures p~ 
(a  = 1, 2), one has 

Tab = (Pl + pl)UaUb + (P2 + P2)12al)b + (Pl +P2)gab (12) 

It will be assumed not only that the separate dominant energy conditions 
hold, but that the extra conditions p~ - 0 hold and so p~ + p~ > 0. One now 
chooses null vectors l' and n'  in the timelike 2-space spanned by u and v 
such that x/'2 u a= l ' ~ -  n ' " ( ~ l ' n  '~= 1) and expresses v in terms of l' and 
n'. On substituting into (12) and rescaling l' and n' appropriately, as before, 
one obtains with the help of  (2) the form (3a). The Segr6 type is {1, 1(11)} 
with corresponding eigenvalues - ( P l  + P2) - e, Pl +P2 + e, pl +P2, and p~ +P2, 
where 

2e = - ( p l  +pz+ pl + p2)+{(p l  +p2+ pl + p2) 2 

- 4 ( p l  + Pl)(P2 + p2)[1 - (UaVa)2]} 1/2 (13) 

and so e > 0. No further degeneracies are permitted and the eigenvectors 
are easily computed in terms of the original field quantities. 

2.6. The Combination of a Radiation Field and a Perfect Fluid 
(Lichnerowicz, 1955; Goodinson and Newing, 1970) 

For such a noninteracting combination of (nonzero) fields one has in 
an obvious notation 

Tab = vl" l'b + (p + p)UaUb + Pgab (14) 

The separate dominant energy conditions are again assumed, as is the extra 
condition p---0, and so p + p > 0. The unit, timelike, future-pointing flow 
vector u of  the fluid and the null direction l' of  the radiation field determine 
a timelike 2-space and hence a null direction n' distinct from l' in this 
2-space. The null vectors l' and n' are then chosen scaled such that ~/2 u a = 
l'" - n 'a, which fixes v. An appropriate scaling then leads to (3a) and Segr6 
type {1, 1(11)} with respective eigenvalues - p  - e, p + e, p, and p where 

2e = - ( p  + p) + [ (p  + p)2+ 2 v(p + p)] 1/2 > o 

No further degeneracies are possible and eigenvectors are determined as 
before. 
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2.7. The Combination of a Nonnull Maxwell Field and a Perfect Fluid 
(Lichnerowicz, 1955; Goodinson and Newing, 1970) 

In the usual notat ion,  one has 

Tab = ~(21(anb) -- X~Xb -- Y~Yb) + (P + p)UaUb + Pgab (15) 

where the separate dominan t  energy condit ions are assumed and also the 
extra condi t ion p-> 0. Hence /~ < 0 and p + p > 0. There are two cases to 
consider: the case where the principal null directions l and n o f  the 
electromagnetic field and the unit, timelike, future-point ing flow vector u 
are coplanar  and the case when they are not. 

In  the coplanar  case one can easily read off an or thonormal  basis o f  
eigenvectors o f  Tab by inspection from (15). Alternatively, one can utilize 
the scaling f reedom in I and n by choosing them according to ,/2 u a = 1 ~ - n ~ 
and substituting into (15), using (2), to obtain (3a) and the Segr6 type 
{1, 1(11)} with respective eigenvalues ~ - p , / z  +p ,  - /~  +p,  and -/.~ +p.  No  
further degeneracies are possible and eigenvectors are determined as before. 
The unique timelike eigendirection is spanned by  u. 

In the noncop lana r  case one notes that there is a unit  spacelike vector 
x, determined up to a sign, and which is or thogonal  to l, n, and u. It follows 
that x is an eigenvector o f  Tab with eigenvalue p - / z .  Now construct  the 
null tetrad (l, n, xy),  which uniquely  determines the unit spacelike vector y 
if one insists that  uay,, > 0 (clearly uaya ~ O, since u, l, and n are indepen-  
dent). It is this null tetrad in which we regard the first term of  (15) as being 
written. Then  one has real numbers  a,/3,  3', 6 such that  

u a = a l a + / 3 n ~ + y X " + 6 y  a (16) 

The condit ions uax~ = 0 and uay, > 0 imply that 3' = 0 and 6 > 0. So u ~ -  
6y '~ = ala+/3 n~ and the timelike 2-spaces spanned by u and y and by I and 
n intersect nontrivially. However,  they are not  equal, because u, l, and n 
are independent .  Hence their intersection determines a unique direction, a 
nonzero member  of  which may be written as u '~ = u ~ - ~y~. Then , ,a U a H  = 

- ( 1  + 32) < 0 and so this direction is timelike. N o w  put  w ~ = (1 + 62)-1/2u 'a, 
so that wawa = -1 .  Also, w lies in the 2-space spanned by 1 and n and the 
scaling f reedom in these null vectors can be used to choose them according 
to ~ w e = 1 ~ - n ~. N o w  introduce along the pair  of  uniquely determined 
null directions in the timelike 2-space spanned by y and w null vectors p 
and q such that  ~ p~ = y~ + w ~, ~ qa = y~ _ w~. Since x~y~ = xaw~ = 0, one 
can introduce a null tetrad (p, q, x, z) which determines the unit  spacelike 
vector z up to a sign. One now has 

x/-2ya-~p'~+q '~, 4 C 2 u ~ = ( 6 + r ) p ~ + ( 6 - r ) q "  (17) 

[z = (1 + 32) 1/2] 
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and the energy-momentum tensor can be readily converted to the null tetrad 
(p, q, x, z) by rewriting (15) using the completeness relations for both null 
tetrads (l, n, x, y) and (p, q, x, z). One writes 

Tab = Ix(gab -- 2XaXb -- 2yayb ) + (p + p )u,~ub + Pg,~b 

= (tX +p)(2p(,~qb) + XaXb + ZaZb) 

--2IX(XaXb + Y,~Yb) + (P + p)UaUb (18) 

and then substitutes for y and u from (17) into (18) to obtain the required 
decomposition. The coefficients of  PaPb and q,,qb turn out to be positive 
and a simple scaling of p and q casts Tab into the form (3a) with Segr6 
type {1, 111}. The fimelike eigenvalue is - p  + IX - e and the spacelike ones 
are p - / x  + e, p - IX, and p + IX, where 

2 e = [ 2 i x - ( p + p ) ] + [ ( p + p - 2 i x ) 2 - 8 t z ( p + p ) ( u C ' y , ~ ) 2 ] I / 2 > O  (19) 

Alternatively, one may replace (uaya) 2 by 

(u~ya) 2 = --(2IX)-I(EabUaU b + IX) 

where Eab is the electromagnetic part of  Tab. With this notation, -2IX = 
(E,~bEab) ~/2. No degeneracies are possible. The eigenvectors are readily 
calculated in terms of the field quantities, with the eigenvector z having the 
especially simple form ~/2 z ~ = I a + n ~ when the above choice of  l and n is 
made. 

2.8. The Combination of  a (Noneleetromagnetic)  Radiation Field and a 
Nonnull  Maxwel l  Field 

Here, one has 

Tab = vkakb + Ix(2/(anb)-  x~xb - YoYb) (20) 

where k is the null direction associated with the radiation field, I and n are 
the principal null directions of  the Maxwell field, and Ix < 0, v > 0. Again 
there are two cases, depending on whether k, l, and n are coplanar or not. 
In the coplanar case, k coincides with one of the null directions l or n and 
it easily follows that the Segr6 type is {2(11)} (no further degeneracies) with 
independent eigendirections represented by k, x, and y and corresponding 
eigenvalues Ix, -ix,  and -ix. In the noncoplanar  case, the procedure is very 
similar to that given in the noncoplanar  case of  Section 2.7 and need not 
be repeated. The Segr6 type turns out to be {1,111}, with corresponding 
eigenvalues IX - e, -IX + e, -IX, and +/z, where e = IX + (IX2 _ Ixv)l/2> 0. No 
further degeneracies are possible. 
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To close this section, it is recalled that an observer is said to be 
"following the field (represented by an energy-momentum tensor Tab)" if 
he measures no energy-momentum flux across any spacelike 2-space 
orthogonal to his world line Pirani (1957). Such a condition obtains if and 
only if the timelike tangent vector to the observer's world line is an eigenvec- 
tor of Tab. Hence one can read off which of the energy-momentum tensors 
studied in this section admit such observers, since it is necessary and 
sufficient that they be of the Segr6 type {1,111} or some degeneracy of this 
type. In particular, the coplanar and noncoplanar cases in Section 2.7 are 
distinguished by the fact that in the former case, an observer moving along 
the fluid flow lines "follows the field." 

3. U N I Q U E N E S S  PROBLEMS FOR FIXED FIELD TYPES 

This section is concerned with the following question: if a certain 
energy-momentum tensor can be and is (algebraically) interpreted as a 
combination of energy momentum tensors of field types A, B , . . . ,  C, are 
the particular members of A, B , . . . ,  C in the combination uniquely 
determined? 

Clearly, if an energy-momentum tensor represents a perfect fluid with 
p + p > 0, then it uniquely determines the fluid flow u a and the quantities 
p and p. Similarly, if an energy-momentum tensor represents a null or a 
nonnull electrovac field, then the corresponding electromagnetic principal 
null directions are uniquely determined. The corresponding Maxwell bivec- 
tor is then determined to within a duality rotation. These uniqueness results 
are trivial consequences of the algebraic structure of these particular energy- 
momentum tensors. In this section the uniqueness problem for more 
complicated types of field will be considered. 

In the case of the combination of two radiation fields, T~b can be 
written in the form (11) and uniquely determines the 2-space corresponding 
to the degenerate eigenvalue and hence its (timelike) orthogonal comple- 
ment. This uniquely determines the pair of null directions l' and n' and so 
the null directions of the radiation fields are determined to within inter- 
change. 

Suppose now that one has the combination of two perfect fluids. Then 
the resulting energy-momentum tensor has the form (12) together with the 
restrictions given there. Are the physical characteristics of the fluid represen- 
ted by the flow vector, the pressure, and the density uniquely determined? 
Suppose first that the flow vectors u and v are fixed. Since Tab uniquely 
determines its eigenvalues, Pl+P2 and p~ +P2 are determined and p~ +p~ 
and p2+ p2 are determined to within an interchange of their values. Con- 
sequently, for each choice of the values of Pa+Pl and p2+p2, there is a 
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one-parameter family of  values for the quadruple (pa, Pc, Pl, P2) restricted, 
of course, by the requirements that 0-<p~---p~ and p~ > 0, a = 1, 2. Now 
consider the possible freedom in the flow vectors u and v. The algebraic 
structure of  Tab shows that the timelike 2-space spanned by u and v is 
determined, and so if the same energy-momentum tensor also represents 
the combination of  two other perfect fluids whose corresponding quantities 
are designated with primes, then p~ + P2 = P~ + P~, p l + P2 = P ~ q- P l ,  and (12) 
gives 

(pl+pl)UaUb +(p2+P2)VaVb=/3UaUb' ' +yVaVb' ' (21) 

where u, v, u', and v' are coplanar, and/3 and y are positive and subject 
to/3 + 3' = Pl +P2+ pl + P2. Now rewrite the right-hand side of  (21) in terms 
of  Ua=x/-~u',, and V,=.,/--yv" and then express U and V in terms of u 
and v. On substituting into (21) one finds a one-parameter family of solutions 
for the pair U and V restricted by the requirement that U and V be timelike. 
With such a solution for U and V the coefficients/3 and y are reintroduced 
as in (21) and decomposed as/3 =p~+p~ and y =p~+p~ subject to p~ +p~ = 

t f _ _  P f Pl + P=, P 1 + P= - P~ + P2, and 0--< p ~ -< p~ and p" > 0, which can be done with 
the one-parameter freedom discussed above. 

Next consider the case of the combination of a radiation field and a 
perfect fluid. The energy-momentum tensor is given by (14). Because of  the 
algebraic structure of  Tab, p and p are uniquely determined and if (14) can 
be rewritten with a different radiation direction-flow vector pair (n, v), then 
I, u, n, and v are coplanar, lying in a timelike 2-space. Thus, there are only 
two choices for the direction n and, clearly, l = n implies u = v. The other 
choice for n leads to a unique v (clearly distinct from u). These are the 
only possibilities in this case. 

If  the energy-momentum tensor is the combination of a nonnull elec- 
tromagnetic field and a perfect fluid and given by (15), then, in the coplanar 
case, Tab uniquely determines/x, p, p, u ~, and the pair of  null directions I 
and n. Thus the separate energy-momentum tensors are determined. In the 
noncoplanar case, again/~, p, and p are determined and one must effectively 
solve the equation obtained by equating (15) with a similar expression 
containing primed quantities, except that / , '= /z ,  p ' = p ,  p ' = p .  With the 
help of the completeness relation (2) this reduces to 

( p + p )u,~ub + 4tzl(anb> = ( p + p )U" U'b + 4tzl{an~ ) (22) 

Now let x be the unit spacelike eigenvector of Tab with eigenvalue p - / z ,  
determined to within a sign, and let y '  be the vector for the primed fields 
corresponding to the vector y used in Section 2.7. Using the completeness 
relation (2) for the null tetrads (l, n, x, y) and (l', n', x', y') in (22) yields, 
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after cancellation of the terms in xaxb and gab, 

(p+p)UaUb--2 t zyayb=(p+p)u '~u 'b - -2 l zy ' y 'b ( - -Pab)  (23) 

where uaya and u'ay" are both nonzero. Consideration of the invariant 
PabP ab shows that (Uaya) 2 = (u 'ayra)2  and so, by changing the sign of y', if 
necessary, one can arrange that uaya = u'ay'a. It turns out that there is 
essentially only one solution of (23) for the primed quantities other than 
the trivial one. To see this, note that the left-hand side of  (23) has only two 
nonzero eigenvalues and they are distinct. This follows by a direct calcula- 
tion from (23). These eigenvalues, say, K1 and K2, can be written down in 
terms of /z ,  p, p, and uay~. The corresponding uniquely determined eigen- 
directions can be represented by k 1 =- u a + aly~ and k~ --= ua + a2ya, where 
al  and a2 are distinct and can also be written in terms of #, p, p, and u"y~. 

Consequently, the right-hand side of  (23) has eigenvalues K1 and •2 and 
k ~ - u a + a l y a  and k ' 2 = u ' + a 2 y a .  But eigendirections represented by ,1 . . . .  

kl  I ( l a  1(t l  ] ( t l a  i~2 lg2a l~t21rp2a ~- a.v =.va .- and ..a.~ =. -a  .~ . There are then four possibilities, k 1 
•  '1 and k 2 = •  '2, and these lead to two essentially different solutions of  
(23), the trivial one and the nontrivial one mentioned earlier. With this 
nontrivial solution introduced into the right-hand side of  (23), one then 
subtracts 21~XaXb from both sides, completes the orthogonal spacelike pairs 
x, y and x' ,  y '  to null tetrads (1, n, x, y) and (/', n', x ' ,  y'),  and, by use of  
the completeness relation (2), obtains (22). The resulting timelike 2-spaces 
spanned by the pairs l, n and l', n' are distinct, as are the timelike vectors 
u and u', and so the decomposition of Tab into its electromagnetic and 
perfect fluid parts can be done in essentially two ways. In this respect, 
Goodinson and Newing (1970) seem to be in error. 

The timelike, unit, future-pointing vectors u and u' and the correspond- 
ing y and y '  are related by 

a+ + a - 2a+a  - 
u ' =  + _ u + _ y  

Ol. - -  OL Ol, - -  OI. 

2 a + + a  - 
y '  + _ u~ + _ y  (24) 

(p + p - 2/.t) + [(p + p - 2/~) 2 -  S/~(p + p)(U~ya)2] ~/2 
Og ziz - -  

2 ( p + p ) ( u ~ y ~ )  

I f  the energy-momentum tensor is the combination of a nonnull elec- 
tromagnetic field and a radiation field, the situation is essentially the same 
as that given above for a nonnull electromagnetic field and a perfect fluid 
in both the coplanar and noncoplanar cases, and so need not be discussed 
further. 
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For the energy-momentum tensor of a viscous fluid without heat flow, 
equation (6) holds with qa = 0 and the flow vector u a is a timelike eigenvector 
of Tab. If  Tab has a unique timelike eigendirection, then u a, p, and p -  ~'0 
are uniquely determined. If, on the other hand, Tab has more than one (and 
hence infinitely many) timelike eigendirections, it may be "projected" 
according to (7) and (8) with respect to any of  these eigendirections to 
produce infinitely many different forms for the fluid (some of  which may 
not satisfy the dominant energy conditions). However, all these timelike 
eigendirections have the same eigenvalue and so p and p -  ~'0 are still 
uniquely determined. 

For a nonviscous fluid with heat flow, the dominant energy conditions 
imply that either (pWp)2>4q2 (Segr6 type {1, 1(11)}) or (p+p)2=4q2 
(Segr6 type {2(11)}) (see Section 2.2). In the former case, similar arguments 
to those given above reveal that p, p, and q are determined, but that there 
are two choices for the pair u a and qa. In the latter case, p, p, q, u a, and 
qa are uniquely determined. 

To close this section, it is remarked that although several of the single 
and combined energy-momentum tensors have the same Segr6 type, some 
distinction between them is possible by consideration of the size and 
numerical ordering of the eigenvalues. 

4. T H E  ENERGY-MOMENTUM TENSOR AND 
ALGEBRAIC EQUIVALENCE PROBLEMS 

There has been some recent discussion of the possibility that a given 
energy-momentum tensor may be interpreted physically in two quite 
different ways (Tupper, 1981, 1983; Raychaudhuri and Saha (1981, 1982). 
However, some of  the algebra was lengthy and, in one case, an error was 
made. Without entering into the physics of the situation (that is, into the 
differential relations involved), a brief discussion of the algebraic problem 
will be given here. The results of  the above authors will be rederived in an 
easier and more natural manner and some new results given. For the most 
part, only the general algebraic structure of the energy-momentum tensor 
will be considered, that is, no energy conditions will be imposed. The 
following results can now be given. 

1. Let Tab be a symmetric tensor at p ~ M. Then: 
(a) Tat, can be written in the algebraic form of a general fluid without 

heat flow if and only if Tab admits a timelike eigenvector (equivalently, Tab 
has Segr6 type {1,111} or some degeneracy of this type). 

(b) if Tab can be written in the algebraic form of a general fluid with 
nonzero heat flow, then this heat flow vector is an eigenvector of the shear 
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tensor if and only if the fluid flow and heat flow vectors span a timelike 
invariant 2-space of Tab. 

The result (a) follows because if qa = 0 in (6), clearly u a is an eigenvec- 
tor of Tab. Conversely, if u a is a timelike eigenvector of Tab, then the 
projection equation (7) with respect to u a holds and the last relation in (8) 
shows that the heat flow is zero. To prove (b) one contracts T,b with u a 
and q~, respectively, and both implications follow immediately. In fact, if 
Tab has a timelike invariant 2-space, then projecting Tab, according to (7), 
with respect to any unit timelike member of it produces a corresponding 
heat flow vector which, if nonzero, lies in that 2-space and is an eigenvector 
of the associated shear tensor. The existence of a timelike invariant 2-space 
for Tab rules out the possibility of it having Segr6 type {31} or its degeneracy. 

2. If  the energy-momentum tensor Tab of an electrovac field is to be 
interpreted algebraically as that of a general fluid w~th zero heat flow, then 
the electromagnetic field is necessarily a nonnull ~ield and the fluid flow 
vector must be a member of the (uniquely determined) timelike 2-space of 
eigenvectors of Tab. The viscosity is nonzero and the shear tensor of the 
fluid has an eigenvalue degeneracy. If, on the other hand, Tab is to be 
interpreted algebraically as that of a general fluid with nonzero heat flow, 
then either (a) the electromagnetic field is null, in which case there is no 
restriction on the fluid flow vector, which is necessarily coplanar with the 
resulting heat flow vector and the principal null direction of the electromag- 
netic field, the viscosity is nonzero, and the shear tensor of the fluid has an 
eigenvalue degeneracy, or (b) the electromagnetic field is nonnull, in which 
case the fluid flow vector must be outside the timelike 2-space of eigenvectors 
of the electromagnetic field and the viscosity is nonzero. 

Most of the proof can be obtained by considering Segr6 types. The 
shear eigenvalue degeneracy is a direct consequence of the electromagnetic 
eigenvalue degeneracy, and the coplanar-ness referred to in (a) follows by 
equating the appropriate energy-momentum tensors and contracting with 
the fluid flow vector. In each case, the algebraic form of the fluid energy- 
momentum tensor can be obtained by an appropriate projection according 
to (7) and (8). The above result up to and including (a) was essentially 
contained in Tupper (1981) and Raychaudhuri and Saha (1981) and part 
(b) corrects an error in Tupper (1981). 

3. If  the energy-momentum tensor of a combined electromagnetic field 
and perfect fluid is to be algebraically interpreted as that of a general fluid 
without heat flow, then either (a) the electromagnetic field is null, in which 
case the general fluid flow vector is uniquely determined and is coplanar 
with the perfect fluid flow vector and the principal null direction of the 
electromagnetic field, the viscosity is nonzero, and the shear tensor has an 
eigenvalue degeneracy; or (b) the electromagnetic field is nonnull, with its 
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principal null directions coplanar with the perfect fluid flow vector, in which 
case the general fluid flow vector is uniquely determined, being parallel to 
the perfect fluid flow vector, the viscosity is nonzero, and the shear tensor 
has an eigenvalue degeneracy; or (c) the electromagnetic field is nonnull, 
with its principal null directions not coplanar with the perfect fluid flow 

) 

vector, in which case the general fluid flow vector is uniquely determined 
and the viscosity is nonzero. 

The proof follows easily by noting that the combination of an elec- 
tromagnetic field and a perfect fluid leads to a unique timelike eigendirec- 
tion. The general fluid energy-momentum tensor is obtained by projecting 
according to (7) and (8) in the obvious way. This theorem was originally 
given in Raychaudhuri and Saha (1982). 

4. If  the energy-momentum tensor of a combined electromagnetic field 
and a perfect fluid is to be algebraically interpreted as that of a general 
fluid with nonzero heat flow, then the general fluid flow vector can be in 
any timelike direction except the unique timelike eigendirection of the 
combined field. The viscosity is not zero if the electromagnetic field is null 
or if it is nonnull and not aligned with the perfect fluid. 

The proof of the first part is clear. The final part is proved by noting 
that a general fluid with zero shear but nonzero heat flow leads to the Segr6 
type {1, 1(11)} (which instantly rules out the nonnull, nonaligned case), 
where the repeated eigenvalue is the largest eigenvalue and is thus incon- 
sistent with the null case (where the second largest eigenvalue is the repeated 
one). 

5. If  an energy-momentum tensor that is the combination of an elec- 
tromagnetic field and a nonviscous fluid with nonzero heat flow has the 
algebraic form of a perfect fluid, then (a) the electromagnetic field must be 
null, (b) the repeated principal null direction of the electromagnetic field, 
the heat flow vector, and the two fluid flow vectors are coplanar, (c) the 
pressures and densities of the two fluids are equal, and (d) the two fluid 
flow vectors are nonparallel. 

To prove this, let Eab , Tab , and T'~b be the energy-momentum tensors 
of the electromagnetic field, the nonviscous fluid with heat flow, and the 
perfect fluid, respectively, so that, in the usual notation, 

T ' b  -- E,,b = Tab (25) 
i v l 

T1ab ---- (P q-P )12al)b q-P gab 

E,~b = I.t (21{anb) -- xaxb -- YaYb) (26) 

T,~b = ( p + p )  U, Ub + Pgab + 2 U{ ,,qb } 

where O<--p<--p, O<-p'<--p ', p > 0 ,  p ' > 0 ,  and /z<0.  Now, the right-hand 
side of (25) has a degenerate spacelike eigenvalue, and so if we assume 
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that the electromagnetic field is nonnull, it follows that the perfect fluid 
flow vector and the principal null directions of the electromagnetic field 
are coplanar. (This result requires a slightly different argument to that given 
in Section 2.7 because of the change of sign in (25). It is straightforward.) 
The uniquely determined degenerate 2-spaces on each side of (25) show 
that l, n, u, v, and q are coplanar and the facts that v is an eigenvector of 
the left-hand side of (25) and that u is not an eigenvector of the right-hand 
side show that u and v are not parallel. So write v ~ = f ( u  ," + gqa) ,  where f 
and g are nonzero, and substitute into the equation Eab = T~b -- Tab, obtain- 
ing an expression for Eab in terms of the two sets of fluid variables. The 
condition that q is an eigenvector of E,,b with eigenvalue ~ (=p  - p ' )  then 
yields /z > 0, which is a contradiction. This establishes part (a) of the 
theorem. Now suppose that the electromagnetic field is null, so that, in the 
usual notation, Eab = Vlalb, V > 0. Equation (25) then shows that l, v, u, and 
q are coplanar. This establishes the result (b). Comparing degenerate 
eigenvalues on either side of (25) and taking traces gives p'  = p  and p ' =  p, 
which establishes result (c). The final result follows by assuming that u and 
v are parallel, substituting into (25), and contracting to obtain an easy 
contradiction. Theorem 5 was first given by Tupper (1983). 

5. I N H E R I T A N C E  OF SYMMETRY FOR TH E  
ENERGY-MOMENTUM TENSOR 

Suppose the metric g of the space-time M admits a one-parameter 
group of homothetic motions and let ~ be a vector field (homothetic Killing 
vector field) on M which generates it. One has, in components (and with 
the usual abuse of notation), 

'~'r = Kgab (27) 

where K is constant and ~ denotes the Lie derivative. In this section, a few 
remarks will be made concerning the "inheritance of symmetry" problem 
in General Relativity, namely the extent to which the symmetry embodied 
in (27) is inherited by the quantities that make up the source of the field 
represented by the energy-momentum tensor. This problem has been dis- 
cussed by several authors (see Wainwright and Yaremovicz, 1976a, b, and 
the references contained therein). The situation when M admits a one- 
parameter group of motions (so that r is a Killing vector field) may be 
obtained from all results in this section by setting K = 0. There is a good 
reason for considering homothetic motions, because in many ways they 
represent one of the most general types of symmetry transformations 
(Mclntosh, 1979; Hall, 1983b, 1984b). 
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From (26) one easily f i n d s  ~ g a b =  __Kgab and it is then not difficult 
to show that ~ R ~ c  d = 0 holds for the curvature tensor components. It then 
follows that ~ R ab  = 0  and ~eR = - K R ,  and so, from (1), 

&Tab = 0 (28)  

The following result summarizes the consequences of (27) and (28) for the 
algebraic structure of Tab. A partial statement of it was given in Wainwright 
and Yaremovicz (1976a, b). The proof  given here is of more general 
applicability (see Hall, 1985). 

Suppose (27) and hence (28) holds. Then (a) if oe is an eigenvalue of 
Tab, s =--K~, (b) if k is an eigenvector of Tab corresponding to a 
nondegenerate eigenvalue, then s =/3k a for some function fl on M, and 
if k is nonnull, it may be scaled so that r a = -1Kka (s =�89 

To see this, let k be an eigenvector of  Tab with eigenvalue o~, so that 
Tabk b = ag~bk b holds throughout M. Now let p e M and if ~:(p) # 0 consider 
the integral curve c of ~: through p. Let 

P P p P 

Tab, k a, gab, and a 

be the values of  the obvious quantities at p, so that 

PTPk b P P P b  
ab -- a g a b k  = 0 

holds at p. Then let Trab, k 'a, grab, and a'  be the quantities defined along c 
in some neighborhood of  p by Lie dragging, along c, the corresponding 
quantities at p. Then (27) implies that g~ab = O'gab, with o" = e -Kt, and t an 
appropriate parameter along c, and (28) gives T;b = Tab and a '=&.  It 
follows that Tab k 'b  P . , b  

- -  OZOrgabK has zero Lie derivative along c in the neighbor- 
hood considered and so is zero on c in that neighborhood, since it is zero 
at p. Thus the exact algebraic structure of Tab, including degeneracies, is 
preserved as one moves along c with the eigenvalues being scaled by cr 
(since ~cr= a)  and so one has ~ e a  =-Ko~. This proves part (a) of  the 
theorem. If  a is a nondegenerate eigenvalue, it also follows that k 'a is 
parallel to k a, and this leads to the statement (b) of the theorem after a 
scaling so that kak a= • in the nonnull case. The above argument still 
holds if a is a complex eigenvalue and k a complex (necessarily nonnull) 
eigenvector. The case when ~:(p) = 0 is straightforward. 

It is remarked that this method, when applied to the algebraic Bel 
criteria (Bel, 1962), supplies details of the symmetry inheritance of the 
eigenvalues and principal null directions of the Weyl tensor. 

A straightforward proof  of this result is also available directly from 
definition if k is a nonnull eigenvector and a its corresponding eigenvalue. 
This can be extended to a complete proof  by special consideration of the 
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null eigenvectors in the Segr6 types {211} and (31}. However, the proof  
given above is shorter and of more general applicability. The result is also 
easily extended to the case where the eigenvalue a has exactly a double or 
a triple degeneracy, in which case the two- or three-dimensional distributions 
defined on M by the corresponding eigendirections of Tab are preserved 
under Lie dragging. 

The above results and the eigenvector-eigenvalue structure, together 
with degeneracies, for the fields and combinations of fields studied in 
previous sections now supply details of the symmetry inheritance for the 
energy-momentum tensor under homothetic motions. The case of a com- 
bined electromagnetic and perfect fluid field has been considered earlier 
(Wainwright and Yaremovicz, 1976a, b). In this case, for example, one finds 
~r 5~=--Kp, and ~Ua=IKu~ in both null and nonnull cases, 
together with s = -K/z in the nonnull case. In both cases, the electromag- 
netic principal null direction(s) are Lie dragged parallel to themselves along 
c. It also easily follows that if the energy-momentum tensor has, at each 
p ~ M, a unique, timelike eigendirection spanned by a future-pointing, unit, 
timelike vector u a [as it must if it is to satisfy the dominant energy conditions 
stably (Hall, 1985)], then the expansion 0, the rotation w, and the shear tr 
of u a satisfy ~r -- -1K0 and similar equations for w and or. 
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